16. Gui-Qiang G. Chen, Jiawen Zhang, and S. Zhu, Global Regular Solutions of the Multidimensional Degenerate Compressible Navier-Stokes Equations with Large Data of Spherical Symmetry, submitted, 2025.
15. Jiawen Zhang and S. Zhu, Global well-posedness of classical solutions to the vacuum free boundary problem of the 1D degenerate compressible Navier-Stokes equations with large data, submitted, 2025.
14. Jiawen Zhang, Liang Zhao, and S. Zhu, Global-in-time well-posedness of classical solutions to the vacuum free boundary problem of the 3D degenerate compressible Navier-Stokes equations, submitted, 2025.
13. Zhouping Xin, Jiawen Zhang, and S. Zhu, Global-in-time well-posedness of classical solutions to the vacuum free boundary problem of the 1-D viscous Saint-Venant system with large data, submitted, 2025.
12. Zhongmin Qian, Liang Zhao, and S. Zhu, Global-in-time convergence in infinity-ion-mass limit for bipolar Euler-Poisson equations, submitted, 2024.
11.Qin Duan, Zhouping Xin, and S. Zhu,Well-posedness of regular solutions for 3-D full compressible Navier-Stokes equations with degenerate viscosities and heat conductivity, submitted, 2024.
10. Gui-Qiang G. Chen, Yucong Huang, and S. Zhu, Global spherically symmetric solutions of the mulitdimensional full compressible Navier-Stokes equations with large data, accepted inArch. Ration. Mech. Anal., 2024.
9. Y. Geng, Y. Li, and S. Zhu, On the global-in-time inviscid limit of the 3D isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum,J.Math.Pures Appl.179 (2023), 337-390.
8. Q. Duan, Z. Xin, and S. Zhu, On regular solutions for three-dimensional full compressible Navier-Stokes equations with degenerate viscosities and far field vacuum,Arch. Ration. Mech. Anal.247 (2023), no. 1, Paper No. 3.
7. N. Athanasiou, T. Bayles, and S. Zhu, Development of singularities in the relativistic Euler equations,Transactions of the American Mathematical Society376(2023), 2325-2372.
6. G. Chen, G.-Q. G. Chen, and S. Zhu, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum,Ann. Inst. H. Poincare Anal. Non Lineaire39 (2022), 121-170.
5. Z. Xin and S. Zhu, Global well-posedness of regular solutions to the three-dimensional compressible Navier-Stokes Equations with degenerate viscosities and vacuum,Adv. Math.393 (2021), Paper No. 108072, 69pp.
4. Z. Xin and S. Zhu, Well-posedness of three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum,J. Math. Pures Appl.152 (2021), 94-144.
3. Y. Li, R. Pan, and S. Zhu, On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum,Arch. Ration. Mech. Anal.234 (2019),1281–1334.
2. Y. Geng, Y. Li, and S. Zhu, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with vacuum,Arch.Ration. Mech. Anal.234 (2019), 727–775.
1. M. Ding and S. Zhu, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum,J.Math.Pures Appl.107 (2017), 288-314.
1. 英国皇家学会,牛顿学者,2017年入选,2018-2020年于牛津大学任Newton International Fellow。
The Royal Society (UK), Newton International Fellowships, NF170015,Mathematical analysis of the M-D compressible Navier-Stokes equations and related nonlinear problems, 2018-2020, PI.
2. 中组部,国家海外高层次人才引进计划,青年特聘专家,2019.
Organization Department of the CPC Central Committee,China,State Specially Recruited Expert, Youth Plan, 2019,PI.
3. 科技部, 国家重点研发计划,青年科学家, 2022YFA1007300, 高维可压缩Navier-Stokes方程组的理论研究,2022-12 至 2027-11, 主持.
Ministry of Science and Technology of the People's Republic of China, National Key R&D Program of China No. 2022YFA1007300, Theoretical research on the multi-dimensional compressible Navier-Stokes equations, 2022/12-2027/11, PI.
4. 上海市,海外高层次人才引进计划,2020.
Shanghai, Overseas High-end Talents Introduction Plan, 2020, PI.
5. 国家自然科学基金委, 青年科学基金项目, 12101395, 高维退化可压缩Navier-Stokes方程组的奇异性形成及相关的非线性问题, 2022-01 至 2024-12, 主持.
National Natural Science Foundation of China, NSF 12101395, Formation of singularities for the multi-dimensional degenerate compressible Navier-Stokes equations and related nonlinear problems, 2022/01-2024/12, PI.
6. 国家自然科学基金委, 面上项目,12471212, 高维退化可压缩Navier-Stokes方程组有限能量解的适定性理论,2025-01 至 2028-12, 主持.
National Natural Science Foundation of China, NSF 12471212, Well-posedness of finite-energy solutions for the multi-dimensional degenerate compressible Navier-Stokes equations, 2025/01-2028/12, PI.