12/2018--Present, Professor, Shanghai Jiao Tong University (SJTU), China
12/2008--12/2018, Associate Professor, SJTU, China
06/2007--11/2008, Lecturer, SJTU, China
07/2005--05/2007, Post-doctorate, Peking University, China
04/2010—04/2011, Visiting Researcher, Plymouth University, UK
06/2016-06/2017, Visiting Researcher, University of Maribor, Slovenia
[1] Y. Tang(唐异垒) and W. Zhang, Generalized normalsectors and orbits in exceptional directions,Nonlinearity, 17 (2004),1407--1426.
[2] Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system inbiochemical reaction,Comput. Math.Appl., 48 (2004), 869--883.
[3] Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependentpredator-prey system,J. Math. Biol.,50 (2005), 699--712.
[4] D. Huang, Y. Gong, Y. Tang and W. Zhang, Degenerate equilibria atinfinity in the generalized russelator,Math.Comput.Model.,42 (2005), 167--179.
[5] Y. Tang and W. Li, Global analysis of an epidemic model with aconstant removal rate,Math. Comput. Model,45 (2007),834--843.
[6] Y. Tang and W. Li,Globaldynamics of an epidemic model with an unspecified degree,Comput. Math. Appl.,53(2007), 1704--1717.
[7] S. Ruan, Y. Tang and W. Zhang,Computing the hetroclinic bifurcation curves in predator-prey systems with ratio-dependentfunctional response,J. Math. Biol., 57 (2008), 223--241.
[8] Y. Tang, W. Li and Z. Zhang, Focus-center problem of planar degenerate system,J. Math. Anal. Appl., 345(2008), 934--940.
[9] Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in an SIRS modelwith nonlinear incidence rate,SIAM J. Appl. Math.,69 (2008), 621--639.
[10] S. Ruan, Y. Tang and W.Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functionalresponse,J. Differential Equations,249 (2010), 1410--1435.
[11] Y. Tang, D. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model,IMA Journal of Applied Mathematics,76 (2011), 876--898.
[12] Y. Tang and D. Xiao, Periodic solutions for a predator-prey modelwith periodic harvesting rate,International Journal of Bifurcation and Chaos,24 (2014), 1450096.
[13] Y. Tang, L. Wang and X. Zhang, Center of planar quinticquasi--homogeneous polynomial differential systems,Discrete Contin. Dyn. Syst., 35 (2015), 2177--2191.
[14] Y. Tang,Global dynamics ofa parasite-host model with nonlinear incidence rate,International Journal of Bifurcation and Chaos,25(2015), 1550102.
[15] Y. Shi and Y. Tang, Onconjugacies between asymmetric Bernoulli shifts,J. Math. Anal. Appl.,434(2016),209–221.
[16] Y. Tang, W. Zhang, VersalUnfolding of Planar Hamiltonian Systems at Fully Degenerate Equilibrium,J. Differential Equations261(2016) 236–272.
[17] W. Fernandes, V. G.Romanovski, M. Sultanova, Y. Tang, Isochronicity andlinearizability of aplanar cubic system,J. Math. Anal. Appl.,450(2017) 795–813.
[18] Y.Tang, D. Xiao, W. Zhang and D. Zhu, Dynamics of epidemic models with asymptomatic infection and seasonalsuccession.Math. Biosci.Eng.14(2017),no. 5-6,1407–1424.
[19] V. G. Romanovski, W.Fernandes, Y. Tang and Y. Tian, Linearizability and critical period bifurcations of a generalized Riccati system,Nonlinear Dynamics,90 (2017), 257-269.
[20] H. Chen, J. Llibre andY. Tang, Global dynamics of SD oscillator,Nonlinear Dynamics,91 (2018), 1755-1777.
[21] Y. Tang, Global dynamics and bifurcation of planar piecewise smooth quadratic quasi--homogeneous differential systems,Discrete Contin. Dyn. Syst. A, 38 (2018), 2029-2046.
[22] H. Chen, S. Duan, Y. Tang and J. Xie, Global dynamics of a mechanical system with dry friction,J. Differential Equations,265(2018),no. 11,5490–5519.
[23] V. Romanovski, M. Han, S. Macesic and Y. Tang, Dynamics of an autocatalator model,Mathematical Methods in the Applied Sciences, 41 (2018), 9092–9102.
[24] H. Chen and Y. Tang, Atmost two limit cycles in a piecewise linear differential system with three zones and asymmetry,
Physica D. Nonlinear Phenomena, 386-387 (2019), 23-30.
[25] J. Llibre and Y. Tang, Limit cyclesof discontinuous piecewise quadratic and cubic polynomial perturbations of alinear center,Discrete Contin. Dyn. Syst. B, 24 (2019) , 4: 1769-1784.
[26] H. Chen and Y. Tang, Proof of Artés–Llibre–Valls’s conjectures for the Higgins–Selkov and the Selkov systems,J. Differential Equations,266(2019),7638–7657.
[27] Y. Tang and W. Zhang,Versal unfolding of a nilpotent Lienard equilibrium within the odd Lienard family,J. Differential Equations,267(2019), 2671–2685.
[28] Y. Tang and X. Zhang, Global dynamics of planar quasi-homogeneous differential systems,Nonlinear Anal. Real World Appl.49(2019),90–110.
[29] H. Chen, J. Llibre andY. Tang, Centers of discontinuous piecewise smooth quasi--homogeneous polynomial differential systems,Discrete Contin. Dyn. Syst. B, 24(2019), 6495-6509.
[30]H. Chen and Y. Tang, A proof of Euzebio-Pazim-Ponce's conjectures for a degenerate planar piecewise linear differential system with three zones,Physica D. Nonlinear Phenomena,401 (2020) , 132150.
[31]H. Chen and Y. Tang,An oscillator with two discontinuous lines and Van der Pol damping,
Bulletin des Sciences Mathematiques,161 (2020), 102867.
[32]H. Chen and Y. Tang, Global dynamics of the Josephson equation in TS^1,J. Differential Equations,269 (2020), 4884–4913
[33] Borut Zalar, Brigita Fercec, Yilei Tang and Matej Mencinger, Partial qualitative analysis of planar AQ-Riccati equations,Glasnik Matematicki,55 (2020), 351 – 366.
[34] L. Liu, Y. Tang, W. Zhang, Versal unfolding of homogeneous cubic degenerate centers in strong monodromic family,J. Differential Equations,283,(2021),136–162.
[35] H. Chen; M. Jia, Y. Tang, A degenerate planar piecewise linear differential system with three zones,J. Differential Equations,297(2021),433–468.
[36] H. Chen, Y. Tang, D. Xiao, Global dynamics of a quintic Liénard system with Z2-symmetry I: saddle case,Nonlinearity,34(2021),no. 6,4332–4372.
[37] H. Chen, J. Llibre, Y. Tang, The Limit Cycles of the Higgins–Selkov Systems,J. Nonlinear Sci.,31(2021),no. 5,Paper No. 85, 25 pp.
[38] H. Chen, Y. Tang, D. Xiao, Global dynamics of hybrid van der Pol-Rayleigh oscillators,Physica D. Nonlinear Phenomena,428(2021),Paper No. 133021, 16 pp.
[39] Z. Wang, H. Chen, Y. Tang, The focus case of a nonsmooth Rayleigh-Duffing oscillator,Nonlinear Dynamics,107(2022), 269-311.
[40] B. Fercec, V. Romanovski, Y. Tang, L. Zhang, Integrability and bifurcations of a three-dimensional circuit differential system,Discrete Contin. Dyn. Syst. B,27 (2022), 4573-4588.
[41] Z. Guo, Y. Tang, W. Zhang; More degeneracy but fewer bifurcations in a predator–prey system having fully null linear part,Z. Angew. Math. Phys.,73(2022),No. 122.
[42] H. Chen, Y. Tang, Z. Wang; The discontinuous limit case of an archetypal oscillator with a constant excitation and van der Pol damping,Physica D. Nonlinear Phenomena,438 (2022), 133362.
[43] H. Chen, Y. Tang, D. Xiao,On the uniqueness of limit cycles in second-order oscillators,J. Differential Equations,370(2023), 140–166.
[44] H. Chen, X. Chen, M. Jia, Y. Tang; A quintic Z2-equivariant Lienard system arising from the complex Ginzburg-Landau equation,SIAM J. Math. Anal. ,55 (2023), 5993-6038.
[45] C. Cao, C. Fu, Y. Tang, Periodic orbits for 2n-dimensional control piecewise smooth dynamical systems,Comput. Appl. Math.43 (2024), no. 4, Paper No. 260, 19 pp.
[46] H. Chen, M. Jia, Y. Tang; Topological classifications of a piecewise linear Liénard system with three zones,J. Differential Equations,399 (2024), 1–47.
[47] X. Hu, Y.Tang*, T.Wang,Global dynamical behavior of a generalized muthuswamy-chua-ginoux system,Discrete And Continuous Dynamical Systems-Series S,18(2025), no.11, 3211–3230.
[48] Hu, Xinhao; Tang, Yilei*,Periodic orbits and integrability of Rocard's system,Physica D. Nonlinear Phenomena,475(2025), Paper No. 134594.
[49]Chen, Hebai;Tang, Yilei*;Xiao, Dongmei,Limit cycles of Liénard systems with several equilibria,Acta Math. Sin. (Engl. Ser.)41(2025), no.4, 1104–1130.[50] Cao,
[50] Cao, Chen; Chen, Hebai; Llibre, Jaume; Tang, Yilei*,Global dynamics of the Selkov systems,Physica D. Nonlinear Phenomena482(2025), Paper No. 134894.
[51] Chen, Hebai; Tang, Yilei*, Zhang, Weinian, Limit cycles in a rotated family of generalized Lienard systems allowing for finitely many switch lines,Proceedingsof the Royal Society of Edinburgh,
155 (2025), 2121–2149.
[52] Chen, Hebai; Tang, Yilei; Wang, Zhaoxia*, A Review of Current Research on the Global Structure of Polynomial Lienard Systems, Scientia Sinica Mathematica, 55 (2025), 2227-2248.
[53] Hu, Xinhao; Tang, Yilei*,Center problem of generalized Kukles systems with Z2-symmetry or weak Z2-symmetry,J. Differential Equations,450(2026), 113734.
[54] Chen, Hebai; Chen, Xingwu; Jia, Man*; Tang, Yilei,A quintic Z2-equivariant Liénard system arising from the complex Ginzburg-Landau equation: The sum of the indices of all equilibria is 1,J. Differential Equations, 453 (2026), part5, 113922.