https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=259914
http://www.researcherid.com/rid/A-5275-2008
Publications
1.C. Li, C. Liu, Z. Wu and H. Xu, Non-negative solutions to fractional Laplace equations with isolated singularity.Adv. Math.373(2020)https://doi.org/10.1016/j.aim.2020.107329
2.W. Chen, C. Li and S. Qi, A Hopf lemma and regularity for fractionalp-Laplacians.Discrete Contin. Dyn. Syst.40(2020),no. 6,3235–3252,doi:10.3934/dcds.2020034
3.W. Chen, C. Li, J. Zhu, Fractional equations with indefinite nonlinearities, Disc. Cont. Dyn. Syst. 39(2019), p1257-1268,doi:10.3934/dcds.2019054
4.C. Li and W. Chen, A Hopf type lemma for fractional equations,Proc. Amer. Math. Soc.147(2019),no. 4,1565–1575,DOI: https://doi.org/10.1090/proc/14342
5.C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems,P. Natl. Acad. Sci. USA, 27(115), 2018, p6976-6979,DOI: https://doi.org/10.1073/pnas.1804225115
6.C. Li and Z. Wu, Radial symmetry for systems of fractional Laplacian, Acta Mathematica Scientia,5,38(2018), p1567-1582,doi.org/10.1016/S0252-9602(18)30832-4
7.W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335(2018), p735-758,Doi.org/10.1016/l.aim.2018.07.016
8.W. Chen, C. Li, G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calculus of Variations and Partial Differential Equations, 2(56), 2017, 18pages.DOI 10.1007/s00526-017-1110-3
9.T. Cheng, G. Huang, C. Li, the maximum principles for fractional Laplacian equations and their applications, Comm. Contemporary Math., 6, 19(2017).DOI:http://dx.doi.org/10.1142/S0219199717500183
10.W. Chen, C. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308(2017), 404-437.DOI:http://dx.doi.org/10.1016/j.aim.2016.11.038
11.Z. Cheng, G. Huang, C. Li, On the Hardy-Littlewood-Sobolev type systems, Comm. Pure & Appl. Anal. 6, 15(2016), 2059-2074.DOI:10.3934/cpaa.2016027
12.C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. in Partial Differential Equations, 7, 41(2016), 1029-1039.DOI: http://dx.doi.org/10.1080/03605302.2016.1190376
13.L. Zhang, C. Li, W. Chen, T. Cheng, A Liouville theorem for $α$-harmonic functions in $R^n_+$. Disc. & Cont. Dynamics Systems, 3, 36(2016), 1721-1736.DOI:10.3934/dcds.2016.36.1721
14.W. Chen, C. Li, and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptical equations, International J. of Math., 8, 27(2016).DOI: 10.1142/S0129167X16500646
15.Y. Lei, C. Li, A sharp criteria of Liouville type for some nonlinear systems, Disc. & Cont. Dynamics Systems, 6, 36(2016),DOI:http://dx.doi.org/10.3934/dcds.2016.36.xx
16.C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Society, 9, 144(2016), 3731-3740DOI: https://doi.org/10.1090/proc/13166
17.G. Huang and C. Li, A Liouville theorem for high order degenerate elliptic equations, J. Diff. Equations, 258(2015), 1229-1251.DOI:10.1016/j.jde.2014.10.017
18.Z. Cheng and C. Li, Shooting method with sign-changing nonlinearity, nonlinear analysis: theory, methods & applications, 114(2015), 2-12.DOI:10.1016/j.na.2014.10.019
19.G. Huang, C. Li, and X. Yin, Existence of the extremal functions for the discrete Hardy-Littlewood-Sobolev Inequality,Disc. & Cont. Dynamics Systems, 3, 35(2015), p935-942.DOI:10.3934/dcds.2015.35.935
20.Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality, Disc. Cont. Dynamics Sys. 34(2014), 1951-1959.DOI:10.3934/dcds.2014.34.1951
21.C. Deng and C. Li, Endpoint bilinear estimates and applications to the 2-dimensional Poisson-Nernst-Planck system, Nonlinearity, 26(2013), 2993-3009;DOI:10.1088/0951-7715/26/11/2993
22.W. Chen, Y. Fang, C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space, Journal of Functional Analysis 265 (2013), 1522-1555.DOI:10.1016/j.jfa.2013.06.010
23.W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure & Appl. Anal. 12(2013), 497-2514.DOI:10.3934/cpaa.2013.12.2497
24.W.Chen,C. Li, Method of moving planes in integral forms and regularity lifting.Recent developments in geometry and analysis,Adv. Lect. Math. (ALM), 23,Int. Press, Somerville, MA,2012.35R11 (35-02 45G15), 27-62.
25.Y. Lei, C. Li, and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system, Calc. Var. of Partial Differential Equations, 45(2012), 43-61.DOI:10.1007/s00526-011-0450-7
26.Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a γ-Laplace system, J. Differential Equations, 252(2012), 2739-2758.DOI:10.1016/j.jde.2011.10.009
27.C. Li, J. Villavert, An extension of Hardy-Littlewood-Polya inequality, Acta Math. Scientia, 31(2011), 1-4.DOI:10.1016/S0252-9602(11)60400-1
28.J. Bebernes, Y. Lei, C. Li, A singularity analysis of positive solutions to an Euler-Lagrange integral system, Rocky Mountain J. of Mathematics, 41(2011),387-410.DOI:10.1216/RMJ-2011-41-2-387
29.W. Chen, C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Disc. Cont. Dynamics Sys. 30 (2011), 1083-1093.DOI:10.3934/dcds.2011.30.1083
30.Y. Lei, C. Li, C. Ma, Decay estimation for positive solution of a γ-Laplace equation,Disc. & Cont. Dynamics Systems, 30(2011), 547-558.DOI:10.3934/dcds.2011.30.547
31.C. Ma, W. Chen, C. Li, Regularity of Solutions for an Integral System of Wolff Type, Adv. Math., 226(2011), 2676-2699.DOI:10.1016/j.aim.2010.07.020
32.T. Y. Hou,C. Li,Z. Shi,S. Wang,X. Yu, On singularity formation of a one-dimensional model for incompressible flows,Arch. Rational Mech. Anal. 199 (2011) 117–144.DOI:10.1007/s00205-010-0319-5
Older Publications
1. W. Chen, Y. Fang, C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space, Journal of Functional Analysis 265 (2013), 1522-1555.DOI:10.1016/j.jfa.2013.06.010
2. W. Chen, C. Li, Method of moving planes in integral forms and regularity lifting. Recent developments in geometry and analysis, Adv. Lect. Math. (ALM), 23, Int. Press, Somerville, MA, 2012. 35R11 (35-02 45G15), 27-62.
3. C. Ma, W. Chen, C. Li, Regularity of Solutions for an Integral System of Wolff Type, Adv. Math., 226(2011), 2676-2699. DOI:10.1016/j.aim.2010.07.020
4. T. Y. Hou, C. Li, Z. Shi, S. Wang, X. Yu, On singularity formation of a one-dimensional model for incompressible flows, Arch. Rational Mech. Anal. 199 (2011) 117–144.DOI:10.1007/s00205-010-0319-5
5. W. Chen, C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. #4, 29(2009), 949-960.DOI:10.1016/S0252-9602(09)60079-5
6. C. Li, L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. Math. Analysis, #3, 40(2008), 1049-1057.DOI:10.1137/080712301
7. T. Hou, C. Li, “Dynamic stability of the 3D axisymmetric Navier-Stokes equations with swirl”, Comm. Pure Appl. Math., 61 (2008), no. 5, 661--697. DOI:10.1002/cpa.20212
8. C. Jin, X. Cai, C. Li, Parallel domain decomposition methods for some stochastic partial differential equations, SIAM J. of Sci. Comp., 2 (2007), 2096-2114.DOI:10.1137/060662381
9. T. Y. Hou, C. Li, “On global well-posedness of the Lagrangian averaged Euler equations”, SIAM J. Math. Analysis, 38(3), 2006, 782-794. DOI:10.1137/050625783
10. W. Chen, C. Li, and B. Ou, "Classification of solutions for an integral equation", Comm. Pure Appl. Math., #3, 59(2006), 330-343.DOI:10.1002/cpa.20116
11. H. Segur, D. Henderson, J. Carter, J. Hammack, C. Li, D. Pheiff, K. Socha, Stabilizing the Benjamin-Feir instability, J. Fluid Mech., 539(2005) 229-271. DOI:10.1017/S002211200500563X
12. W. Chen, C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145(1997) 547-564.
13. C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math, 123(1996) 221-231.
14. W. Chen, C. Li, A necessary and sufficient condition for the Nirenberg problem, Comm. Pure Appl. Math., 48(1995) 657-667. DOI:10.1002/cpa.3160480606
15. W. Chen, C. Li, What kinds of singular surfaces can admit constant curvature, Duke Math. J., 78(1995) 437-451.DOI:10.1215/S0012-7094-95-07821-1
16. W. Chen, C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in R^2, Duke Math. J., 71(1993) 427-439.DOI:10.1215/S0012-7094-93-07117-7
17. C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Comm. in Partial Differential Equations, 16(2&3)(1991) 491-529. DOI:10.1080/03605309108820766
18. C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. in Partial Differential Equations, 16(4&5)(1991) 585-615. DOI:10.1080/03605309108820770