1.Chen, X., Wang, F.Y., Optimal integrability condition for the log-Sobolev inequality, Q. J. Math. 58 (2007), 17--22.
2. Chen, X., Wang, F.Y., Construction of larger Riemannian metrics with bounded sectional
curvatures and applications, Bull. Lond. Math. Soc. 40 (2008), 659--663.
3.Chen, X., Li, X.M., Wu, B., A Poincare inequality on loop spaces, J. Funct. Anal. 259 (2010), 1421--1442.
4.Chen, X., Li, X.M., Wu, B., A concrete estimate for the weak Poincar\'e inequality on loop space,
Probab. Theory Related Fields 151 (2011), 559--590.
5.Chen, X., Wang, J., Functional inequalities for nonlocal Dirichlet forms with finite range jumps or
large jumps, Stochastic Process. Appl.124 (2014), 123--153.
6.Chen, X., Wu, B., Functional inequality on path space over a non-compact Riemannian manifold, J. Funct. Anal. 266 (2014), 6753--6779.
7.Chen, X., Li, X.M., Strong completeness for a class of stochastic differential equations with
irregular coefficients, Electron. J. Probab. 19 (2014), 34pp.
8. Arnaudon, M.,Chen, X., Cruzeiro, A.B., Stochastic Euler-Poincare reduction, J. Math. Phys. 55 (2014), 081507.
9.Chen, X., Wang, J., Intrinsic ultracontractivity for general Levy processes on bounded open sets,
Illinois J. Math. 58 (2014), 1117--1144.
10.Chen, X., Wang, F.Y., Wang, J., Perturbations of functional inequalities for Levy type Dirichlet
forms, Forum. Math. 27 (2015), 3477--3507.
11.Chen, X., Cheng, L.J., Mao, J., A probabilistic method for gradient estimates of some geometric
flows, Stochastic Process. Appl.125 (2015), 2295--2315.
12.Chen, X., Wang, J., Intrinsic contractivity properties of Feynman-Kac semigroups for symmetric
jump processes with infinite range jumps, Front. Math. China 10 (2015), 753--776.
13.Chen, X., Wang, J., Intrinsic ultracontractivity of Feynman-Kac semigroups for symmetric jump
processes, J. Funct. Anal. 270 (2016), 4152--4195.
14.Chen, X., Wang, J., Weighted Poincare inequalities for non-local Dirichlet forms,
J. Theoret. Probab. 30 (2017), 452--489.
15.Chen, X., Kim, P., Wang, J., Intrinsic ultracontractivity and ground state estimates of non-local
Dirichlet forms on unbounded open sets, Comm. Math. Phys. 366 (2019), 67--117.
16.Chen, X.Chen, Z.Q., Wang, J., Heat kernel for non-local operators with variable order, Stochastic Process. Appl., 130 (2020), 3574--3647.
17.Chen, X., Kumagai, T., Wang, J., Random conductance models with stable-like jumps: heat kernel estimates and Harnack inequalities, J. Funct. Anal., 279 (2020), 108656, 51 pp.
18.Chen, X., Wu, B., Zhu, R.C., Zhu, X.C., Stochastic heat equations for infinite strings with values in a manifold, Trans. Amer. Math. Soc., 374 (2021), 407--452.
19.Chen, X., Chen, Z.Q., Kumagai, T., Wang, J.,Homogenization of symmetric jump processes in
random media,Rev. Roumaine Math. Pures Appl. 66 (2021), no. 1, 83--105.
20.Chen, X., Kumagai, T., Wang, J., Random conductance models with stable-like jumps: Quenched
invariance principle, Ann. Appl. Probab. 31 (2021) 1180--1231.
21.Chen, X., Chen, Z.Q., Kumagai, T., Wang, J., Quenched invariance principle for long range
random walks in balanced random environments, Ann. Inst. Henri Poincare Probab. Statist. 57 (2021) 2243--2267.
22.Chen, X., Chen, Z.Q., Kumagai, T., Wang, J., Homogenization of symmetric stable-like processes
in stationary ergodic medium, SIAM J. Math. Anal. 53 (2021) 2957--3001.
23.Chen, X., Chen, Z.Q., Kumagai, T., Wang, J., Periodic homogenization of non-symmetric
Levy-type processes, Ann. Probab. 49 (2021)2874--2921.
24. Biskup, M.,Chen, X., Kumagai, T. and Wang, J., Quenched Invariance Principle for a class of
random conductance models with long-range jumps,Probab. Theory Related Fields. 180 (2021) 847--889.
25.Chen, X., Ye, W.J., A probabilistic representation for heat flow of harmonic map on manifolds
with time-dependent Riemannian metric, Statist. Probab. Lett. (2021) 109165, 10pp.
26.Chen, X., Ye, W.J., A study of backward stochastic differential equation on a Riemannian manifold,Electron. J. Probab.Paper No. 85, 31pp.
27Chen, X., Kim, P., Wang, J., Two-sided Dirichlet heat estimates of symmetric stable processes on
horn-shaped regions, accepted by Math. Ann.
Preprint
1.Chen, X., Cruzeiro, A.B., Ratiu, T., Stochastic variational principles for dissipative equations with
advected quantities, arXiv:1506.05024v2, submitted.
2.Chen, X., Li, X.M., Wu, B.,Logarithmic heat kernels: estimates without curvature restrictions, arXiv:2106.02746.